Heuristics for Minimum Spanning K-tree Problem
نویسندگان
چکیده
منابع مشابه
A Metaheuristic Algorithm for the Minimum Routing Cost Spanning Tree Problem
The routing cost of a spanning tree in a weighted and connected graph is defined as the total length of paths between all pairs of vertices. The objective of the minimum routing cost spanning tree problem is to find a spanning tree such that its routing cost is minimum. This is an NP-Hard problem that we present a GRASP with path-relinking metaheuristic algorithm for it. GRASP is a multi-start ...
متن کاملImproved Minimum Spanning Tree Heuristics for Steiner Tree problem in graph
The minimum Steiner tree problem, a classical combinatorial optimization problem with a long history, is a NP-complete problem. Due to its wide application, study of heuristic algorithm about Steiner tree problem has important practical and theoretical significance. In this paper we first review one of the existing algorithms for solving the Steiner problem in graphs, Minimum Spanning Tree Heur...
متن کاملThe (K, k)-Capacitated Spanning Tree Problem
This paper considers a generalization of the capacitated spanning tree, in which some of the nodes have capacity K, and the others have capacity k < K. We prove that the problem can be approximated within a constant factor, and present better approximations when k is 1 or 2.
متن کاملFast Heuristics for Large Instances of the Euclidean Bounded Diameter Minimum Spanning Tree Problem
Given a connected, undirected graph G = (V, E) on n = |V | vertices, an integer bound D ≥ 2 and non-zero edge weights associated with each edge e ∈ E, a bounded diameter minimum spanning tree (BDMST) on G is defined as a spanning tree T⊆ E on G of minimum edge cost w(T) =∑w(e), ∀ e∈ T and tree diameter no greater than D. The Euclidean BDMST Problem aims to find the minimum cost BDMST on graphs ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Procedia Computer Science
سال: 2014
ISSN: 1877-0509
DOI: 10.1016/j.procs.2014.05.362